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ABSTRACT

‘We consider” the problem of controlling a possibly degenerate diffusion
process so as to minimize the probability of escape over a given time interval.
It is assumed that the control acts on the process through the drift coefficient,

and that the noise coefficient is small. By developing a large deviations type

theory for the controlled diffusion, we obtain several results. The limit of the

normalized log of the minimum exit probability is identified as the value I of
o
an associated (deterministic) differential game. Furthermore, we identify a

I8 ~

deterministic (and e-independent) mapping g from the sample values €w(s),

0 €s ¢ >t, into the control space such that if we define the control used at

time t by u(t) = g(ew(s), 0 € s ¢ i), then the resulting control process is
PR

progressively measurable and g-optimal (in the sense that the limit of the

normalized log of the exit probability is within & of I). e

American Mathematical Society 1980 subject classifications: Primary
93E20, 60F10; Secondary 92D25.

Key Words and phrases: Controlled diffusions, large deviations,
differential games.
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o> 1. INTRODUCTION

Consider the white noise driven control system living in Rd
- dx¥€ = b(x"€,u)dt + ea(x*€)dw, (1.1)

) where u takes values in a compact set K C R There are many problems

4_.: where one wants to keep x“€(-) in a set G until some particular job is

‘-i‘ finished. For example, in the problem of pointing a telescope on a satellite,
the domain G and the duration are determined by the object to be

Voo photographed and the time required. See Meerkov and Runolfsson [6] for

("2 additional examples.

Y The associated control problem can be formulated in several different

P ways, depending on the time interval of interest. We consider two criteria.

- Define T%¢ = inf{t: x*¢(t) € 8G). One criterion is to minimize

P {T¢ ¢ T), x €GP = interior of G, (1.2a)

P
L ‘l '.
iy T ¥ 4

a

for given T. The other criterion of interest here is the maximization of

-.’ -
-
‘l

E ¢ x€G° (1.2b)

Ll
ol el o

P, and E_denote the probability and expectation (resp.) given x"€(0) = x.

l In general, it is very difficult to solve for the optimal control. However,
.3 in many problems the parameter € is small. The theory of large deviations
E:. provides an alternative which can give a nearly optimal control for small e,
i and a great deal more information and insight into the control process, likely
;' ::: escape routes, error bounds, etc. Take u to be a feedback function u(x,t) that
.; :‘E is smooth in x, uniformly in t € T. Define the system

oy
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. .
- ¢ = b(du($,t) + (d)v, &0) = x,
o .
:j and define
“ . 1 ¢T
* S(x,u,T) = inf {—J' jv(t)i?dt: &t) € 3G for some t € T}.
e 20
v
_ The theory of large deviations tells us (under some other regularity conditions)
o that
~
o S(x,u,T) = —lim €® log P {T"€¢ ¢ T).
€
.f . .
+ Because of this result, one is tempted to try to maximize (or nearly maximize)
d
v" S(x,u,T), and to use the corresponding (if any) maximizing (or ‘smooth’ nearly
L)
R X
[ ] maximizing) control. This approach encounters serious unresolved technical
Lo
b difficulties. In particular, it is not at all clear that the supremum over smooth
\‘!
-
:{ feedback controls will be as large as that obtained over alternative classes of
LA
‘ _ controls, such as those used below. Note that since we wish to supremize (over
i .
Pf-: u) an infimum over v, the basic problem can be formulated as a differential
:;j game.
. We mention here that calculating the limit of the normalized log of the
&Y
"' minimum exit probability is by itself not useful in establishing the optimal
‘Y
)
5‘ performance for all small € of any given control scheme. It may happen
0\
that a control that is found to be good for a small but fixed ¢ > 0 actually
‘l
|
v behaves poorly in the limit € -~ 0. Obtaining a ’good’ control that depends on
§
\ ¢ only through the actual driving noise process will be an important part of
[/
§ the development below.
'..‘
:_'-f Known results in this area are few in number. W. Fleming and P.
-r:‘
‘;« Souganidis [3] consider the large deviations problem associated with the
Y
W
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minimization of (l.2a) over the class of feedback controls taking values in

; K. By use of PDE-viscosity solution techniques they calculate the

" asymptotics of the infimum of the exit probabilities. Their approach is
"-

v, ) . . . .

oz, restricted to the case where the diffusion is uniformly nondegenerate:
X o(x)o'(x) 3 cl, with ¢ > 0. Furthermore they identify the limit as the
:. value of a certain associated (deterministic) differential game. They do
[

"‘» not deal with the uniformity issue raised previously, nor with the problem
o

s of construction of B&-optimal policies and their uniformity properties. A.
A D. Wentzell and M. 1. Freidlin [5] consider the optimization problem
:ﬁ associated with (1.2b) for a wide class of processes that includes (1.1) in
.

43 the uniformly nondegenerate case. However, in order to obtain a solution
with the desired properties, they restrict the class of available controls in
*‘b

'% a way that is probably not natural for these types of problems. For
' example, they consider feedback controls that are continuous, except
:f possibly at one point. Simple examples in dimension greater than one show
-j the 'best' control may have discontinuities along manifolds of dimension
¥

" one less.

X The objective of this paper is to extend the conclusions of [3). By use
¢

# of probabilistic arguments (as opposed to PDE), we recover the results
.. presented there. The probabilistic arguments allow us to extend these
¢ . . . .
1: results to the important degenerate case, which is in fact more natural in
1)

? . . . .

:‘, applications. We also address the uniformity issue raised above. The
0 .

~ results in this direction are not completely satisfactory, in that the
3 exhibited control is not of the simple feedback form, but depends on the
\ 'full information’ of the past. However, they do suggest that feedback
.69
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controls are available which do not depend on € explicitly,
and which are nearly optimal for small e,

Our basic assumptions and definitions are as follows.

Assumption Al
(1) b(-,-) and of-) are Lipschitz with constant K and bounded with
constant B on an open set containing E}, the closure of G.
(2) The control space K is compact and independent of time.
(3) G is an open set in R,
(4) Either (i) o(-) is a square matrix and uniformly nondegenerate, or

else (ii) we can partition b and o in the form

[ bl(x,u)] [ 0,(x) ]
b(x,u) = , ox) =
b,(x) 0

where o,(-) is a square matrix and uniformly nondegenerate.

Throughout the paper we shall assume that we are given a probability
space (. F,F(t),P) and a Wiener process w(-) on [0,1] with respect to F(t). We
then take as our class of admissible controls the set of K-valued progressively
measurable processes. We denote the set of all such processes by F. For
convenience we recall the definition of a progressively measurable process

(with respect to F(t)).

Decfinition. A stochastic process {(t) on the sample space 2 and time interval
[0,1] is F(t)-progressively measurable if the mapping [0,t] x 22 D (s,w) = {(s}(w) is

B(t) x F(t) measurable for every 0 € t € 1, where B(t) is the Borel o-algebra of

[0,t].

Y T N RN RSN e e g i g
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::."_:'. Remark. The symbol u will be used to represent two different types of
B~
i control processes, depending on the context. At times it will be a
; . deterministic process used in the differential game, and at times it will denote
oo
_:__ a stochastic process used to control the diffusion. Likewise v will be used to
L
- ' represent both stochastic and deterministic processes, depending on the context.
.i| :',' In all cases the intended use should be clear.
i; The organization of the remainder of the paper is as follows. In
*:.. Section 2 we give a precise definition of the associated differential game
:EE in terms of an adaptation of the Elliott-Kalton {4] formulation, and discuss
-:.E: how the existence of value for this differential game relates to our
"" problem. The only difference between our definition and the wusual
:‘: Elliott-Kalton definition is the added requirement that the maps « and 8
'{" defined below must be measurable. The additional requirement of
P e
-'.—'.' measurability is due to the fact that several uses are made of stochastic
_'t' processes defined by composing o (or B) with a given progressively
; measurable process. Measurability of « (or B) ensures that the resulting
1
"' process is adapted. The addition of this condition does not change the
': resulting ’value’ of the game. Section 3 contains the statement and proof
'-Z: of the main theorem. The proofs of several technical lemmas make up a
"
.:;-‘:' concluding appendix. For notational simplicity, we shall consider the
o problem on the interval [0,1]. The results carry over to an arbitrary
\ interval in the obvious way.
b, -
..3'7: Notation. We use C,[0,1] to denote the set of continuous functions taking
‘ values in R® (with k depending on the context) and starting at x, and take
::2 d(-,-) as the sup norm metric in this space.
L) i;
3
%
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5
0
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: 2. THE ASSOCIATED DIFFERENTIAL GAME

N
{ Define

9

¥ = (u: [0,1] = K: u is measurable},

.

TR

g 1

po N = {v: [0,1] » R I vidt < = }

t 0

!

_\: We identify any two functions which agree a.e. and consider M and N as
," metric spaces with the L! metric. A mapping « : N = M is called a strategy
L

for the maximizing plaver if « is measurable and if whenever 0 € s € ] and

-.; )

A v(t) = v(t) for ae O €t €s,

.\.

£ then

& of V(1) = ofV)(t) for ae. 0 €t €s.
108

15

3’. A strategv for the minimizing plaver is defined in an analogous way, and such
's
! a strategy will be denoted by the symbol B. The set of all minimizing
-y

' 3‘ (respectively maximizing) strategies will be denoted by A (resp. I).

™)

~d Next define X(x) to be zero if x € 8G and += if x € G% The definition of

the differential game (DG) is then given in terms of the following dynamical

: -_’ equation and cost:
3
- Dynamics.

@

]

K p

o ¢ = b(du) + o(d)v, &0) = x. @1
)

y .

::: Let T = inf(t: ¢(t) € 8G) A 1.

W

9 .
R Cost. For ¢(-) defined through (2.1), set
H~:

“u

>

“

v,

o

5
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::::::: I (Tx 2
N Clu,v) = 5 I v(tlfdt + X(KT ).
~, 0

?,

L 3
Ha

We then define the lower value of the DG by

[ Sar 1
P

I"(x) = b'gA sup C(u, B{u)).

s,y e
-

LA

The upper value is defined by

+ - .
I"(x) = iueq_ ig{ C(fVv], v).

Remarks. The terms upper and lower refer to which player has the
‘information advantage’. In a heuristic sense, for the game corresponding
to the lower value we allow the minimizing player (v here) to know the
next move of the maximizing player (u) before choosing his own move.
Although this distinction is somewhat obscured in the abstract
Elliott-Kalton formulation, it is intuitively obvious in the Fleming and
Friedman formulations [1], which are equivalent to the Elliott-Kalton
formulation under some hypotheses. The reader is referred to [1] for
further discussion. The DG we consider differs from that of [3], but it
seems to be more natural for this type of problem. The remarks that
follow illustrate this point,

The Elliott-Kalton definitions of upper and lower values in terms of
strategies have interesting interpretations in terms of the large deviations
properties of the controlled diffusion. First note that the v-control in the
DG plays the role of the small noise ew in the diffusion. Let small 6 >
0 be given. Consider the upper value I*(x), and let « be a ‘nearly’

optimizing stratcgy for the maximizing player. Let v € N be given. Then

e e LS . e -~ - . - a
I I A I N NN R AT AT N (“ﬂf‘-‘*‘" -
PR PRI IR Y IS N % A e i R T TR T 3% S L VY j)*.& a MM
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The ‘nearly’ supremizing « gives us a strategy that accomplishes one of
two things. Either X(&T))) = « (¢ never escapes from G) or

("= 2 +

- [v(t)“dt » IT(x) — &

20
(¢ escapes from G, but at a ‘cost’ of not less than I*(x) — 6). Large deviations
theory for the process ¢w then suggests that when ¢ is small the probability of
ew ‘tracking' one of the v functions that corresponds to escape from G (in the

sense that x%¢€

is near to the corresponding ¢ associated with ofv], v) is no
greater than exp - (I*(x) - 28)/€2. This suggests that we can obtain a
progressively measurable control u, from the ‘nearly’ supremizing « so that

when € is small
ug, € + 2
P (T € 1) €exp —(IT(x)—286)/¢€”.

On the other hand, consider the lower value I°(x), and let 8 be ‘nearly’
infimizing. Then, no matter what progressively measurable control strategy
u(t) is used, B describes a path for the noise to follow whose ‘action’ or ‘cost’
is no greater than I"(x) + 6, and which leads to escape. The large deviations
properties of ew now suggest that no matter what control is used the
probability of escape should (roughly) be bounded below by exp — l’(x)—25/e’.

We thus have (roughly)
,€
exp ~(I"(x) —286)/€2 € P{T” € 1) € exp — (I*(x) — 26)/€?,

with the conclusion that I°(x) » I*(x). From the definition of the game it is

possible to show I7(x) € I*(x), which implies that the game has a value.
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Y 3. THE MAIN THEOREM
{
" at
':t.: Before stating the main theorem, we introduce a ‘continuity’ assumption
--r,:.
| ‘;\_ on the domain G. Define G® for small 6 as follows: if & » 0, then
oy
')
o G% = (x € R inf(x—y: y € G} € §),
y v
A'.)
:"-'a if & <0, then
I‘
s N
o G® = {(x € R: inf{x—y|: y £G) » -8).
L3 ‘,.‘
:'_'.' Next define 1%(x,8), I7(x,6) as the upper and lower values of the DG defined
v
::: in Section 2, but with Gb8 replacing G there. Since I*(x,8) (respectively 17(x,5))
f &f.
{ is monotone nondecreasing in 8§, the set of discontinuities of I*(x,-) (resp.,
o . .o
g I"(x,-)) is countable. (Note that x is fixed here.)
3
_,r-*
i Assumption A2 I*(x,8) and I"(x,8) are continuous at & = 0.
[ 4
\:::: Remarks. It is simple to prove in the uniformly nondegenerate case that
"'-"‘- I*(x,-) and I°(x,-) are in fact continuous functions. This follows from the
D
) ';,, fact that b(-,-) is bounded on G x K, while v is allowed to ‘push’ the state in
4
1Y
":_" any direction. In the degenerate case it can happen that I*(x,-) (or I°(x,-)) is
>
o
ﬁ}: in fact discontinuous at 6 = 0, but even then Assumption A2 is not very
o
:-_h restrictive, since it is satisfied for an arbitrarily small perturbation of G. A
I:’
'#: consequence of the theorem stated below is that at points at which both
1
X _; I*(x,-) and I'(x,-), are continuous, we have I*(x,6) = I(x,6). Monotonicity
'\1;}5 then implies I*(x,-) and I°(x,-) have the same set of discontinuity points. It
¥a
‘xf-: should also be noted that in order to obtain the result analogous to the main
o
v
:;'
‘
¢
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theorem in the simpler case of uncontrolled diffusion processes:
lim €? log P {T¢ € 1} = —I(x),
€

the assumption obtained from Assumption A2 when the set K contains only

one element is also required.

Theorem. Assume Al and A2, and let I*(x) and I°(x) be the upper and lower
values of the DG described in Section 2. For any u € F, Jet x“€(-) be the

solution of

dxw€ = b(x™€,u)dt + eo(x"€)dw, x¥€(0) = x, (3.1)
and define

™€ = inf{t: x*€(t) € 8G). (3.2)
Then
1 im €? inf P_(T%¢€ » -I- )
(1 he_ €‘log inf LT €1} 3 -I°(x), (3.3)

(2) given ¢ > 0 there exists a measurable function g: C0,1] = M with the
following properties:
(i) if 0 €s €1 andf(t)="f(t)for 0 €t €s, then g[f)(t) = glf](t) for ae.
0 €t <5,

(ii) if we define u = g[ew] then u € F and
Iie_m €2 log P (T™¢ ¢ 1) € —I*(x) + ¢, (3.4)
(3) I*(x) = I'(x).

Remarks. Part (2) of the theorem gives the existence of a c-optimal (in

LN O W W o RN 0, Ja T , >
RN *M&MMMM»W
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b
v the asymptotic sense) control u that depends on xY:€(s), 0 € s € t, at time
t. Part (1) yields an important uniformity property. For any given ¢>0
B and any (possibly e-dependent) progressively measurable control u,, there is

€,>0 such that for 0 <e¢ € ¢,

(o]

.P P (1l € € 1) 3 Pt € < llexp- c/e€l.

< Proof of (1) For ¢ > 0 there exists & > 0 such that I(x,8) € I'(x) + c.
Consider now the DG with domain G® and let Cs(u,v) denote the cost
,.__ associated with the domain G5 Then there exists a minimizing strategy B € A
3 such that

- sup CB(u, B[u)) € I(x) + 2c. (3.5)

K ~% If we redefine B[u)(t) to be zero when t 3 7T, (given by (2.1)) then B is
Mt still a strategy and obviously still satisfies (3.5).

5 Without loss of generality we may assume the following property of the
L] chosen strategy B: (d/dt)B[u](t) exists for all u € M (a.s. in t) and furthermore

v there is Cl < @ such that

d
|5;Bwun|vwmuo|<cl

(as. in t) for all u € M. This fact follows from Assumption A2 and Lemma Al
A of the appendix. \

Take any control process u € F, and define the processes

A v(t) = Blu)(t)
e ¢€ = b(x"%,u) + o(d€)v, ¢%(0) = x.

We then have

B o AT A
hin M z
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CA XY Y

A7 A% X ' 5, \ Y, OntENY)
o PR A W R '!‘A'n‘\'c"l'! ':'ﬂ.‘n‘!‘lh'l':':‘..'c'!.t'. O R N Y Q‘?!‘!‘O'.‘:’!'“"I’!""‘ﬂ_ ) O"ﬂ.'?"

(L AL e \ A L0 | P 1Y



>

s 3R F AN

gy
LA

'y
o

)

AN S % A8 Bive R RE. iy At Al R A0 A0 AL A0, "Rt A Al ARe it R ~dBa A he AN Mo ‘Rl "Rl Alha e “ Al A e dihe-Sde- Al Ale Sha Ade dla Sl Ake' AR, Ghe Sha Sge Sas Als Al Aan San dde &b |

-12_
V()i V Iv()] € C, (as. in 1)
for every w. It follows from the definition of a strategy that v(t) is F(t)
measurable. Since the B under consideration has the property that Blu](:) is
continuous for every u € M, v(-) and ¢¢(-) are F(t)-progressively measurable
processes [7; Theorem 1.5.1).

Now define y¢ = x*€ — ¢€. Then y¢ satisfies the stochastic equation
€ = o(x%€)e dw — (¢€)vdt, y€(0) =0 (3.6a)

Let P, denote the measure induced on C,l0,1] by the solution to (3.6a). By
Girsanov’s theorem there is a Brownian motion w(-) (with respect to the same

filtration F(-) as w(-)) such that
€ = o(x"€)e dw, Yy¢(0) =0, (3.6b)

and such that if P, is the measure induced on C.[0,1] by (3.6b), then

a, . cxp[ I—ZI {o(¢€)v, o(xW€)edw > — -—l—l Jo-}(x¥ ‘)o(cb‘)v|2dt]
dPO € Jy 2¢

(In the degenerate case replace o by o, in the above.)

Define n‘ {wr P, ly€(t) ¢ 6,). We will use the equality

dpP
0 ) = —Ldp, .
l( ) IQG dP
2

First note that for any 5, > 0, Po(n ) 1, as € = 0. Using the nondegeneracy
and the Lipschitz continuity of of-) (or of o,(-) in the degenerate case),
for given &' > O there is 8" > 0 such that |x — y| € 8" implies |o"}(x)o(y) —

I € 8'. This, together with (3.5) yields

1
;— J o~ (x"€)o(¢€)v|2dt € I(x) + 3¢
1]

PR AR DN DO O
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e on ng, if &, is small enough.
Finally we consider the term
B * b
e ” <o(¢€)v, dy€>].

0
l_) Since (d/dt)o($€(t))v(t) is bounded, an integration by parts yields the bound
N 6,C, for some fixed finite constant C,, when on the set ng .

2

- Assembling these estimates, we have (for small enough 82)
o legz) 3 exp — (I(x) + 5¢)/¢€? (3.8)

e when € is small. We now pick 6, small enough so that the event supostsllye(t)l

€ 8, implies x%€(t) exits G before t = 1. The Lipschitz condition on b(-,-)

»

. implies that on Qf ,
2

SRR R]

P

¢€ = b(¢%,u) + ¥ + o(¢%)v, ¢5(0) = x,

W e e
[

M
E A ¢
2ty

where sup¢, ¢,/7(t)| € I—(Sz. We compare ¢€ to the solution of

SR

b = b(bu) + oY)y, ¥0O) = x.

i\ o)

By Gronwall’s lemma, and the various Lipschitz and boundedness conditions,

> ]

»

o

! we can pick 8, ¢ §/2 so that d(¢¢,¢) € 6/2 on ngz. By the definition of B, ¥-)
® must exit G® before time t = 1. Hence on ngz it must happen that x™€(.)

e exists G before t = 1. This combined with (3.8) finishes the proof.

Proof of (2). Now consider the upper value of the differential game:

I*(x) = sup %C(o{v], v).

(RN '.ﬁ.":"") :
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Fix ¢ > 0, and pick & > 0 so that I*(x,~8) # I*(x) — c. Let « be a ‘nearly’
maximizing strategy for the differential game with domain G-%, in the sense
that

inf C-8(ofv], v) 3 I*(x, -8) — ¢. (3.9)

We next describe how we use « to control the diffusion process. Let

the Wiener process w(-) be given, and define (for A > 0)

0 for t €[0,8)
vi) = { (3.10)
[w(na)—w(na-A)]/A for t € [nAnA+4), n 3 |,

We then define our control process by

u(t) = ofev2y(t). (3.11)

From Assumption A2 and Lemma A2 of the appendix it follows that we may
assume without loss of generality that the strategy « has been chosen so that
ofv](-) is a piecewise constant function for every v € N. As was the case
previously, the definition of a strategy implies u(t) is ¥F(t) measurable.
Hence u(t) is an F(t)-progressively measurable process [7; Theorem 1.5.1].

The controlled diffusion is therefore
dx*€ = b(xW€u)dt + eo(x™€)dw, x*"€(0) = x (3.12)

In order to prove the desired result it is convenient to compare x“€(.) with

the solution to

%68 = b(x€Au) + co(x¢HvE, x¢40) = x.

Assume that for any given p > 0 and M < « one could show the existence of
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.~ €, > 0 and A; > 0 so that for & € 4, € € ¢,

( . P (d(x%€,x¢%) 3 p} € exp — M/eZ (3.13)

'.:,(E: Then by taking M = I*(x) + 1 and p = §, it is obvious that the upper bound is

oy proved if we can show
o Tim €? log P (x¢A(t) € 8G™8 for some t < 1) € -I*(x,76) + 2c. (3.14)

However this follows from our choice of « Since (3.9) holds, there are only

, two possibilities for each v € N. Either

’
S

1
% I [v(t)?dt » I*(x, -6) —c, (3.15)
0

,..,--,,.‘,
-{ o -

or the solution of (2.1) does not escape G® by time t = 1. Hence x€8¢.)

Lo
s l..‘l.i"

escapes only on the set of paths for which

LSS
oA

Ay A
.

1/4-1 l/A-l

% LoVt = e T (wit) =~ wis = a)}/28 > I¥(x, <8) — . (316)

~ s
P
.

Standard estimates from the theory of large deviations [2] imply that there

exist a, > 0, € >0 such that for & € A, € € €, the probability of the event

!

given in (3.16) is less than exp — (I*(x,—8) + 2c)/e2. We are therefore Jinished,

P

2Tk -
’ f?-if.'\’ AT

except for the proof of (3.13). The details of this estimate are given in

fASE

Lemma A3 of the appendix.

ol

Proof of (3). It follows from (1) and (2) that I"(x) 3 I*(x). We give the easy proof

SA5

of I'(x) ¢ I*(x)in Lemma A4 of the appendix, which completes the proof. O
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B 7. APPENDIX

(A

f. In this appendix we prove several technical lemmas that are needed to

;:::: prove the main theorem of Section 3. Before presenting the lemmas we

-.'..-

“‘ introduce some new notation. For -1 € s € 1, we define A(s) as the set of

; :: all measurable mappings B from M -~ N such that

»,

7 .

"-5 u(r) = u(r) for ae. 0 €r €t

. implies

o B{u](r) = B{u]}(r) for a.e. 0 €r € min(t+s, 1).

.-l Hence B has a ‘reaction time’ of s, which means he anticipates if s < 0.
j'_: The set I(s) of mappings from N - M is defined in the obvious analogous

o

o way.

o

! Lemma Al. LetI <= 6> 0, and B € A be given such that

+ 4

+ 4

AT sup C(u, B <L A.l
:: sup (u, Blu]) (A.1)
-~

2 Then there exists B' € A and C, < = such that for all u € M,
A\ J

-

; -} I—B'[u](t)l VIB'[ul(t) € C,, (as.), (A.2)

%

2, C-8(u, B'[u]) ¢ I. (A.3)
N

<Y

N~ (As before, C*® is the cost associated with the domain G®) Furthermore,
\

. there is s < O such that given B € &(s) satisfving (A.1) there exists B" € A such

o that (A.3) holds for all v € M(with B" replacing 8’ there).

* -16-

£

:' Proof. The cost associated with B is simply 1 L‘, (B[u](t))2dt € I, since exit
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before time t = | must occur. Define
S(u,C,) = {t: [Blu)(t) » C,),

0 , te€ S(u,Cl)
B][u](t) = {
Bu](t), t € S(u,C,).

Then B, is obviously a strategy, and
l 1
- J (8,[ul(1)dt ¢ 5] (BLu)(v)*dt.

In order to show C‘s(u, B,[u]) € C(u, B[u]), it is sufficient to prove that if

¢ and ¢ are defined by

¢ = b($,u) + o(¢)B[u]
= b(¢,u) + O(¢)BI[U] + d¢)B[U]Is(u'Cl)(t)

¢ = b($,0) + o($)B,fu], &0) = KO) = x,
then d(¢.¢¥) € 6. First note that

t
” AKSNBUI(S) g, (5)ds| € 2BI/C,

0
for 0 €t € 1. Hence,
t —
180) - WO < j K |(s) — W(s)lds
0

t —
+ I K|é&(s) = s)iiB,[u)(s}ids + 2BI/C,.
()

Using the inequality ab € (a2 + b2%)/2 in the second integral, and the

Gronwall inequality, we obtain
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d(6.9) € 2BI[1 + K(2 + DeKED )C .
By choosing C, large, we have
C-8(u, B'[u]) € C(u, Blu))

for allu eM.
Next we obtain B' by smoothing B8,. For A > 0, define
1 t
B'[u](t) = 2 j B,[u](s)ds
t-A
(we define B,[u)(s) = 0 for s < 0). Obviously B' satisfies (A.2). We also have
1 ! 11
> | @wra S [ @aeiar

2 0 0

(A.3) now follows if we can show that small A > 0 implies that the solutions of

¢ = b(bu) + o($)B'[u), H0) = x
¥ = b($,u) + o(¥)B,[ul,  ¥0) = x

satisfy d(¢,¢) € 6. This follows from another application of Gronwall’s lemma
and an integration by parts.

Finally we consider the last statement of the lemma.

Let s < 0 be given. By the same argument as above we may assume the

existence of B' € A(s) satisfying (A.2) and (A.3). Define

0 0<t €=

B[u)(t) = {
B'[u)(t+s) -s <t € 1.
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¢ = b(d,u) + ($)Bu], &O) = x,

¢ = b($,u) + o()B'[u}, WO) = x.

Then B" € A Arguments such as those used above combined with the
boundedness of B', B" imply that when s < 0 is sufficiently large d(¢,¥) € 8.

Hence we have B" € A such that
C-25(u, B"[u]) ¢ C(u, Blu)),
and the lemma is proved. O
Lemma A2 Letl 6 > 0, and « €I be given such that
i%i; C(cqv], v) 3 L (A.4)
Then there exists a' € T such that for all v €N

o'{v])(-) is a piecewise constant fungtion, (A.S)
C8a'[v], v) 3 L (A.6)

Furthermore, there is a s < 0 such that given o € I(s) satisfying (A.4)
there exists «' € T such that (A.6) holds for all v € N (where «" replaces

«' there).
Proof. N may be written as the disjoint union N = N, UN, U N, with

N, = (v € N: x(¥1,)) = 0},

1
I vidt » I],
0

S N

N, = {v € N: x(¥1))) = = and




AR

p e P N | e

o
P

1 1
Ng = {v € N: X(¥T))) == and = I vidt < I}
2.J

(here ¢ = b($.oqv]) + K($)v, 0) = x, and T_ = inf(t: §t) € 8G) A 1). It is clear
that we may define «' in any way we like on N, and N,, as long as it is a
strategy. For € > 0 let {u,, i=1,.,J) be an e-net of the control space K, and
let (K, 1 =1, .., J} be a Borel measurable partition of K such that the
Hausdorff distance between (u;} and K, is less than € fori=1,.,J For 7>
0,and 0 € 2 € 1/7, define

9+
T(1,8,v) = J.

Hamimex,y ¢

Then for all v €N, 1,

J
L1(i,av) =7.
1
We define a'[v] by «'[v](t) = u,, for 0 €t €7, and

a'[v](t) = u; for t€ [!7 + iil'." T(5,2-1,v), 1Y + ? 'r(j,!—l,v)],

Owing to the definition of «', we have

t
sp ”O[b(«r),«{v](r» - b(&(r)a' [vir)]dr| € K+ 7B

for every v € N and measurable function ¢(-) taking values in G® Define

¢ = b(®, ofv]) + o(®)v, &0) = x,
¥ = b(d, «'[V]) + o(d)v, ¥0) = x.
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In order to prove (A.6) it is sufficient to prove d(¢,¢) € & when ¢ and ¥ are

sufficiently small, and when v € N, Using the estimate
t
(1) — WOl € ” (608, sfvD) = (6, o' [vDIds|
0
t
+ ” [b(¢, «'[v]) — b($,x'[V]) + o(P)v — o(P)v]ds
0
_ _ oot gt
€ K+ 7B + 3KI ¢ — Yds/2 + KJ |¢ — $v3ds/2,
0

0

and Gronwall’s lemma, we obtain

d(.4) € (eK+ YB)[1 + K(2 + Dexp K(2 + 1)), (A.7)

Hence we obtain (A.6) for small ¢, 7.
If we are given « € I'(s), and define
u, for 0 ¢t £ s
«[v)(t) =
ofv](t+s) for —s <t €1,
then «" € I, and by the same argument as above we can obtain (A.6) when s <
0 is sufficiently large. The only difference is that in the inequality (A.7) we

replace €K + 7B by —sB. O

Lemma A3 Given p > 0 and M < =, there exists 4, > 0 and €, > 0 such that
(3.13) holds for € € €, A € 4,

Proof. We begin by defining a stopping time (all stopping times are with

respect to w(-)) for P, > 0:

7, = inf{t: [x&8(t) = x€A([t/810) 3 p,), AL
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A simple calculation shows there are €,, > 0 and 4;, > 0 (depending on p,)

such that € ¢ €1 and A ¢ AO,l imply
P (T, <1} €exp — (M + 2)/¢>.

Next we rewrite the equation for x€8 as

dx €8 = b(x€Bu)dt + eo(x€B)dw + dy€8, x€4(0) = x,

where
dy€? = eo(x€ D) vBdt — dw).
iA
il iA-A

We therefore have the decomposition

yEB() = 1,(1) + L(1) + Ig(t) + L (1),

where (for k = [t/a} — 1)

k il
L0 =T [ elotx¢4) - axAiaNdws)
1 Jiaa

k Gid+4
Lo =F [ elotxt A - ox AianvAds,

iA
t
o= [ eaxtAevisds,
kA+4A
t
(1) = I eo(x4(s))dw(s).
k&

For p, > 0, define the stopping times

T,; = inf{t: I[(t)] 3 p,/4) A 1.

iA+A
I eo(x € BGa)vE)dL = I e o(x €8(ia))d w(t).

(A.8)

(A9)

(A.10)
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The same estimates as those used to show (A.8) give the existence of 0 < €y, €

€1 and 0 < Ao,z € AO,l such that for ¢ ¢ €02 and A € Ao,z’

x

P (T,; < 1) Sexp—(M+ 1)/é?

for 1= 3, 4.

Next consider T,,. Using
P,((Tz'l <1} € Px{‘!'z’l <L T, =1}+P(T, <1}

equation (A.8), and a standard estimate on stochastic integrals [8; Lemma
4.7], by picking p, small we obtain 0 < e(; s € €5, and 0 < A(; s € By, such

that ¢ ¢ e(;2 and A& ¢ A(;’z imply
P (T, < 1) €exp — (M + 1)/€2

Finally we consider T,, Using the Lipschitz property of of-), we have
the following bound on a typical summand in L,(t)
iA+A
f e[o(x€8(s)) = o(x¢A(ia))IvA(s)ds
iA

iA+A -
< J' exlf (b(x€(s)) + ea(x€B(s))v(s))ds | [vA(t)dt
iA i

¢ eK Ba%vA(ia)/2 + €2 K Ba%vA(ia)?/2.

We therefore have

1/4
P (T, <1} € P{eA’ KB I 163 p2/4]

YN (A.11)
+ P{e’A’ KB I 18)* » p2/4},
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where {8} is a sequence of i.i.d. N(0,1/8) random variables. For the sake of
notational simplicity, we estimate these terms in the case where (8,} is a scalar
valued sequence.

Using E exp cei2 = (1 -~ 2¢/8) (for 2¢/A < 1), we obtain (for any § > 0 such

that 2¢28 K B% < 1)
_ 1A
P{e’A’ KB ‘11: 18,2 » p,/4}

€ (exp = §p,/4) (1 = 2¢?8KBY)Y/A

1 _
= exp[—tp,/4 + i log(1 — 2¢3Aa KBE)).

Now take ¢ = (M + 2)4/p2€2, and use the fact that the log term -
—8(M+2)RB/p2 as A - 0 to get the estimate of the type (A.8) for the second
term of (A.11).

For the first term of (A.l11), we will use the fact that E exp ci8j ¢

2E exp c, = 2exp ¢?/2A For § > 0 we have
_ 1A
P{eA2 KB § 18) 3 p2/4]
= 1
€ exp — {p,/4 - exp te?a? K?B?/2 - exp Slog 2.
Minimizing w.r.t. £ > 0, we obtain the bound
exp [- p;/32e2A’R’B2 + (log 2)/4]

which again gives the desired bound of the type (A.8) for small 4, e.
Hence there is 0 < ‘8,2 £ ‘5,2 and 0 < Aa,z 4 A(;'z such that for ¢ € 63,2 and

A €85,
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.:2
o P (T, < 1) €exp — (M + 1)/
(- -
)
..' Now _ A _ €A
' ow set T, = 11'2'1. On the set where T, = 1, supg¢, /7" (1) € p,. We
;\ have shown that for € sufficiently small, P {7, <1} € exp = (M + 1)/€%. These
: facts, together with a standard estimate in large deviations theory [2; proof of
{
o Lemma 6.2], yield the lemma. O
.\"
o)
oY)
th Lemma A4 Assume Al and A2. Then I"(x) € I*(x).
:: Proof. Let ¢ > 0 be given. By A2 there is 6 > 0 such that I7(x) € I'(x,—8) + ¢,
LS
=7
~ IT(x) 3 17(x,8) — ¢. Next choose s < 0 such that the second statements of
oy
NS
1 Lemmas Al and A2 hold, with I"(x) + 1 (resp., IT(x) — 1) replacing I in Lemma
J’,.- Al (resp. A2). Suppose B € A(s) is a c-optimal solution to the problem
N
o
- inf sup C(u, B[u A.12
) 8K () ueer{ (u, B{u]) ( )
oY -
:{ Let 1°(s) denote the value of the expression given in (A.12). Then by Lemma
N
_‘:'_' Al we may find B" € A such that
) . _
I sup C °(u, B"[u]) € I°(s).
\ sup ( [u]) (s)
::: Hence we may conclude I'{x,-8) £ f‘(s). In an analogous manner we may
1
o prove I*(x,8) 3 1(s), where
R
A -
' It(is) = sup inf C(fv]), V).
o (s) aer;(’.) inf (cfv], v)
D
:0'2 - -
™~ It follows that I"(x) — I*(x) € I°(s) — I*(s) + 2¢c. Since ¢ > 0 is arbitrary, we
__: are finished if we can show there is s, < 0 such that I-‘(s) 4 I_+(s) for all s5 <5
-~ -
" < 0. However, as is proved in [4; p. 17]), when 2N < 5, I(s) is a lower bound
Ud
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for the value v defined in the sense of Friedman having step size 2N and
allowing the minimizing player to move first (for the full definition of values
in the sense of Friedman, see [4; Sect. 3]). An analogous statement holds for
the corresponding upper values; v§; ¢ 1*(s). Since (as is easily proved) v €V

for every N [4; p. il], we are finished. 0O
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